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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a major toolkit for empirical

macroeconomic research and an important policy tool used in central banks. These models are firmly

rooted in economic theory and can be derived mathematically by solving dynamic stochastic optimization

problems with well-defined objective functions of the various agents (i.e. individuals, firms, financial in-

termediaries, fiscal and monetary authorities) as well as resource constraints. Many methods for solving

and estimating DSGE models have been developed and used in order to obtain a detailed analysis and

thorough estimation of dynamic macroeconomic relationships, see e.g. Fernández-Villaverde et al. (2016)

for an overview. Recently, the question of identification of the parameters in DSGE models has proven to

be of major importance, especially since identifiability precedes (consistent) estimation and inference of an

unknown parameter vector from data. Parameter identification is a model property and can be analyzed

by readily available diagnostic tools before actually taking a model to data. Canova & Sala (2009, p. 448)

argue, however, that “DSGE models have never being built with an eye to the identification of their param-

eters”. This paper can be interpreted as following up on their suggestion. We advocate to assess parameter

identification from a model building perspective, as this provides a better understanding of the economic

forces behind an identification result and, ultimately, behind the dynamics of the model before estimating

it. To this end, we offer (1) a formal approach by using well-established diagnostics and indicators and (2)

a set of applied tips on how to solve theoretical identification failures and improve the strength of DSGE

model parameter identification by fine-tuning the functional specifications, model features and selection of

observed variables and structural shocks.

Before we state the parameter identification problem formally, we briefly introduce our two example mod-

els to illustrate the problems at hand in a nontechnical way. The first example is taken from Kim (2003), who

augments the canonical RBC model with both intertemporal and multisectoral investment adjustment costs.

He then analytically shows that the two adjustment cost parameters, θ and κ, enter the linearized solution

only through a composite parameter, θ+κ1+θ , implying that they cannot be identified separately. We show how

to solve this theoretical lack of identification by looking at (1) the selection of observed variables, (2) the

functional specification of intertemporal adjustment costs, (3) additional model features like a cost on capital

utilization and (4) additional structural shocks, namely an investment-specific technological innovation. Our

second example is An & Schorfheide (2007), who consider a standard log-linearized New Keynesian model

with government spending. Without going into the technical details yet, we already like to point out some

obvious and non-obvious identification issues for illustrative purposes, as these are commonly shared by many

other New Keynesian models. First, some steady state parameters, like steady state government spending or

average technology, drop out from the linearized solution, so there is no way to make inference about them.

Adding additional (e.g. measurement) equations may solve some of these issues but not all. Second, a com-
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mon problem among linearized New Keynesian models is that there is an infinite number of combinations of

the elasticity of demand, 1/ν, and price stickiness parameter, φ, which yield the exact same value for the slope

κ of the New Keynesian Phillips curve. Hence, most empirical studies estimate κ instead. Third, the Taylor

rule parameters are jointly not identifiable. For example, Qu & Tkachenko (2012, Table 1) show that the

parameter combination (ψπ, ψy, ρR, σ2
R) = (1.572, 0.001, 0.742, 0.391) yields the exact same model dynamics,

moments and impulse responses as the parameter combination (ψπ, ψy, ρR, σ2
R) = (0.992, 1.007, 0.796, 0.451),

where ψπ is the sensitivity to deviations of inflation from its target, ψy the sensitivity of the output-gap, ρR
the persistence of the Taylor rule and σR the standard deviation of the monetary policy shock. Economi-

cally, this is a severe problem – especially for policy makers – as the first parametrization corresponds to

a (hawkish) rule that responds only to inflation deviations, whereas the second parametrization mimics a

(dovish) rule where the monetary authority balances its response due to deviations from both the inflation

target and potential output. We show means to solve this theoretical lack of identification by looking at

(1) the set of observed variables, (2) the functional specification of the output-gap, (3) additional model

features like partial inflation indexation and (4) additional structural shocks, namely a preference shock on

the discount factor.

Of course, uncovering such issues is not an easy task as analytical results are rarely available and fea-

sible. But, there are several diagnostic tools which can help a researcher assess parameter identification.

Nevertheless, even if parameters are theoretically identified, weak identification is a serious concern for ap-

plied macroeconomists . Identifiability, in this sense, is an empirical property dependent on the sample size.

Therefore, this paper is also concerned with the sensitivity of fine-tuning model features on the strength

of identification from a Bayesian point of view, as this has become the leading estimation paradigm in the

literature. We aim to provide a practitioner’s point of view on the complexities of assessing parameter iden-

tification in linearized DSGE models and make the available toolkit more accessible to a broader audience.

Our research feeds into the ongoing development of the identification toolbox of Dynare (Adjemian et al.,

2011), a widely used software platform to analyze, solve and estimate a wide class of economic models, such

that our findings can be easily replicated and adapted to other models and needs. The replication files are

available in a GitHub repository from the corresponding author, whereas our methodological contributions

are already merged into Dynare’s 4.6-unstable branch.

In section 2, we state the identification problem formally and the economic and econometric implications

for DSGE models in more detail. We summarize our implementation of the used tools and provide guidance

to uncover identifiability issues from an applied perspective in section 3. The fine-tuning of identification

properties of the investment adjustment costs model is given in section 4, whereas section 5 provides the

corresponding analysis for the monetary model. In section 6, we discuss the general implications of our

results from a model building perspective and their relation to the current literature. Lastly, section 7

concludes.
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2. The identification problem in DSGE models

Let θ ∈ Θ denote the (unknown) vector of model parameters, where Θ is the admissible parameter space

that yields a unique and stable solution, and YT the matrix of observable variables with sample size T .

Further, p(θ;YT ) denotes an objective function generated by a DSGE model, e.g. a probability distribution,

likelihood, posterior or moment’s distance. Following Rothenberg (1971)1, θ is said to be locally identifiable

from p at a point θ0 ∈ Θ, if there exists an open neighborhood of θ0 in which p(YT |θ0) = p(YT |θ1) implies

θ0 = θ1 for all YT . The local point θ0 usually corresponds to calibrated values, the maximum likelihood

or minimal distance estimate, or the prior or posterior mean. In other words, identification problems arise

if distinct parameter values do not lead to distinct objective functions of data, i.e. p(θ;YT ) needs to be

uniquely determined (in the injective sense) by θ0. Even with an infinite sample, T →∞, it is not possible

to pin down some (sets of) parameters, no matter what estimation procedure one uses. We refer to this

as the theoretical lack of identification. By contrast, we are also concerned with the empirical strength of

identification, i.e. how much information can be extracted from a specific YT to estimate model parameters.

That is, even though all parameters enter the objective function separately and it has a unique extremum,

its curvature may be small in certain regions of the parameter space, especially in small samples. We refer

to this as weak identification. The literature is also concerned with global identification; however, it is

numerically much more difficult to verify than local identification and therefore beyond the applied scope

of this paper.2

From an economic point of view, lack of identification leads to wrong conclusions from calibration,

estimation and inference (Canova & Sala, 2009), whereas the source of identification influences empirical

findings (Ŕıos-Rull et al., 2012). From an econometric point of view, parameter identification belongs to the

usual regularity conditions of commonly used estimators, e.g. the asymptotic theory of maximum likelihood

requires local identification (Wald, 1949), whereas for the large sample properties of the generalized method

of moments it is a necessary (but not sufficient) condition (Hansen, 1982). Accordingly, in a full-information

setting this often evokes a badly shaped likelihood function with relatively flat regions, which modern

Bayesian estimation can conveniently circumvent by using tight priors. The common notion, however, that

“unidentifiability causes no real difficulties in the Bayesian approach” (Lindley, 1971, p. 46) is misleading and

“it is necessary to clear up the ground from misunderstandings that may be detrimental for the methodology

as a whole” (Canova, 2007, p. 191). In a nutshell, if parameters are not identifiable, the prior becomes

extremely influential and needs to be informative for a proper posterior distribution. Moreover, in the case

of prior dependence the comparison of prior and posterior for non-identified parameters can be misleading

1We refer to Aldrich (2002) for a historical overview of definitions of identifiability, especially in the Bayesian context.
2Qu & Tkachenko (2017) provide an algorithm that focuses on minimizing the Kullback-Leibler discrepancy from a fre-

quency domain perspective, whereas Kocicecki & Kolasa (2018) exploit the link between observationally equivalent state space
representations and the inherent constraints imposed by the model solution. Both approaches are computationally challenging
and require a lot of fine-tuning. A model-independent implementation into Dynare is left for future research.
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(Koop et al., 2013; Poirier, 1998) and may overstate the informativeness of the data about the parameters.

Likewise, calibrating unidentified parameters can lead to wrong conclusions, since other parameters might

depend on the calibrated ones, see Canova & Sala (2009) for an example.

Weak identification is likely to be a more serious concern for applied researchers. Accordingly, experi-

ence shows that it is quite difficult – both for Frequentists as well as Bayesians – to maximize the likeli-

hood/posterior or minimize some (moment) distance function, because these functions are typically not well

behaved and one has to deal with multiple local extrema, weak curvature in some directions of the parame-

ter space and ridges. The evaluation of first-order and second-order derivatives is intractable and gradient

based optimization methods perform quite poorly (Andreasen, 2010). The resulting estimators either hardly

differ from initial values or may often lie on the boundary of the theoretically admissible parameter space

which makes conventional Gaussian asymptotics a poor approximations to the true sampling distribution.

In many cases the source of these peculiar outcomes is due to identifiability issues or an unfortunate choice

of observables (Guerron-Quintana, 2010). Therefore, it is important to understand identification as a model

property and check its sensitivity before taking a model to the data.

3. Implementation of identification checks

We are concerned with linearized DSGE models, i.e. we use first-order perturbation techniques to

approximate the solution of a DSGE model (Villemot, 2011). We then carefully check the rank criteria of

local identification of Iskrev (2010), Komunjer & Ng (2011) and Qu & Tkachenko (2012) for all considered

model variants and sets of observables with Dynare. These three methods are the most basic and the closest

to ideas from the early work on identification in systems of linear equations, since they are based on the

uniqueness of a solution in the fashion of Rothenberg (1971). Identifiability, in this sense, is a theoretical

property which can be analyzed before seeing any data. Regarding the strength of identification we follow

Koop et al. (2013) who derive a Bayesian learning rate indicator to assess whether a parameter is strongly

or weakly identifiable (and estimable). We now outline our implementation of the diagnostics and tools and

elaborate on our method to select observable variables in more detail.

3.1. Rank checks

Iskrev (2010)’s approach to detect non-identified parameters is based on observational equivalent mo-

ments, i.e. to check whether the mapping from the parameter vector θ to the vector of theoretical first two

moments (mean and autocovariances) is injective. In practice, a researcher needs to select the number of

lags in the autocovariances (or autocorrelations). According to Ratto & Iskrev (2011), it suffices to check

the rank condition for a small number of lags q, since the Jacobian is likely to have full rank for q much

smaller than T . In most practical cases, q between 10 and 30 will be sufficient. A good candidate to try
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first is the smallest q for which the order condition is satisfied, and then increase the number of moments

if the rank condition fails. To ease the computation of the rank, we advise to normalize the Jacobian by

re-scaling each row by its largest element in absolute value.

Qu & Tkachenko (2012)’s approach focuses on observational equivalent spectral properties, i.e. on the

sensitivity of the theoretical mean and spectrum of observables to changes in parameters. More precisely,

the idea is to check whether the Hessian of the log-likelihood, when expressed as the outer product of the

Jacobian matrix of derivatives of the spectral density with respect to θ, is full rank. Their criteria is therefore

based on injectivity of the mapping from θ to the mean and to the spectral density. In practice, a researcher

needs to select the number N of grid points in [−π;π] to approximate the integral of the spectral density.

Note that, if θ0 is already identified from a subset of frequencies (small N), it is also identified if considering

the full spectrum (N → ∞) (the converse is not true). Therefore, we recommend starting with N = 5000

and increase N if the results are unsatisfactory. Moreover, in the code, we exploit symmetry and focus

only on [0;π] to speed up the computations. As the resulting Jacobian is a Gram-type matrix there is no

order condition. Furthermore, we advise to normalize this matrix by transforming it into a correlation-type

matrix with ones on the diagonal to ease the computation of the rank.

Komunjer & Ng (2011) study the implications of observational equivalence in minimal systems and derive

a finite system of nonlinear equations that admit a unique solution if and only if the parameters are identified.

They focus on the mapping from the model parameters to the state space representation, however, taking

into account the possibility that the reduced-form parameters of the policy function may not be identifiable.

Different to the moment and spectrum condition, this method does not require to compute the moments

or spectral density explicitly. However, we need to find the smallest possible dimension of the state vector

that is able to capture all dynamics and has the familiar state-space representation. Conceptually, as DSGE

models are based upon microfoundations, this is not hard to determine for small and medium-sized DSGE

models, e.g. in the code we first remove columns in the transition matrix that consist only of zeros and then

run a brute-force search to find the minimal state vector. However, when dealing with auxiliary equations

and variables this requires some more fine-tuning and user input, see e.g. Komunjer & Ng (2011, appendix)

for illustrative examples. To ease the computation of the rank, we advise to normalize the Jacobian by

re-scaling each row by its largest element in absolute value.

For all three diagnostics we need to compute a Jacobian with respect to model parameters and check

whether it has full rank. Consequently, in the case of rank deficiency it is possible to pinpoint the (sets

of) parameters that are locally indistinguishable from one another. In our experience, we find that the

methods sometimes differ due to numerical settings, numerical errors or the method used to find problematic

parameter sets. For instance, a researcher should try different tolerance levels to judge the robustness of the

rank results. In this line of thought, Iskrev (2010) follows an analytical closed-form approach to compute

the Jacobian of moments using Kronecker products, which is extended in Ratto & Iskrev (2011) by making
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use of computationally more efficient generalized Sylvester equations. Both Komunjer & Ng (2011) and Qu

& Tkachenko (2012), however, rely on numerical methods to compute the derivatives of the minimal system

and spectrum. Numerical differentiation is known to be very sensitive to the thresholds and tolerance

levels used, see Mutschler (2016) for a numerical example. Therefore, we extend Dynare’s identification

toolbox such that all three criteria (moments, minimal system and spectrum) are computed analytically

and displayed by default. Under the hood, we extend ideas from Iskrev (2010) and Ratto & Iskrev (2011)

in order to establish closed-form expressions for Komunjer & Ng (2011)’s and Qu & Tkachenko (2012)’s

Jacobians using either Kronecker products or generalized Sylvester equations. Of course, a user may also

choose to compute all Jacobians numerically and fine-tune the step size. In any case, it is important to use

the same derivation method to improve comparability and robustness of an identification result. To pinpoint

the problematic parameters that yield rank failure, the default in Dynare is to look into the null-space of

the Jacobians and evaluate multi-correlation coefficients of the columns. Another approach, which is used in

this paper, follows Qu & Tkachenko (2012, Corollary 4). That is, we check the rank criteria for all possible

combinations of parameters in a recursive fashion and mark the ones that do not pass the rank check. In

our experience, this brute-force approach yields more reliable results and is computationally just slightly

slower, because, if we find a subset of parameters that are not identified, we can exclude that subset from

higher-order subsets.

Our methodological contributions and improvements are already merged into the 4.6-unstable branch,

such that an applied user can simply call the identification command on his/her model and adapt the

options discussed in this paragraph.

3.2. Bayesian learning rate indicator

Koop et al. (2013) propose an indicator for weak identification based on the idea that the strength of

identification becomes better as more data becomes available. In other words, the more data is used, the

more precisely one can estimate a parameter, which implies shrinking posterior variances. This insight can

be used to derive an indicator, that looks at the average posterior precision of the parameters, i.e. the

inverse of the posterior variance divided by the sample size T . They show that the posterior precision

should increase at a rate of T for strongly identified parameters, whereas for weakly identified parameters

it increases at a slower rate. Therefore, the average posterior precision of a strongly identified parameter

should tend to a constant, whereas for a weakly identified parameter it is heading quickly towards zero.

We generate one artificial data-set of 50000 observations and then use Dynare to estimate the parameters

with Bayesian MCMC methods using the first T = 100, 300, 900, 2700 and 8100 of the simulated observations.

Then, on the one hand, we follow the approach in Chadha & Shibayama (2018) and compute the average

posterior precision by taking the inverse of the product of the posterior variance times T and examine if it

converges to a constant, suggesting the posterior precision is updated at the same rate as T . On the other
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hand, we also compute convergence ratios as in Kamber et al. (2016); that is, we compare the ratio of two

subsequent estimated posterior precision values, e.g. at T=100 and T=300, and check whether this ratio is

close to the rate at which T increases, i.e. close to 300/100=3.

Regarding the implementation, we heavily exploit Dynare’s macro language and preprocessing capa-

bilities to loop over sample sizes and fine-tune the estimation commands for the different model variants.

Following common practice, we use a Random-Walk Metropolis-Hastings sampling algorithm based on four

Markov chains with each 1000000 draws, half are being discarded as burn-in draws in each chain. The

mode and Hessian evaluated at the mode (computed by Dynare’s mode compute = 4, i.e. Chris Sims’s

csminwel) are used to determine the initial Gaussian proposal density with scale parameter set such that

the acceptance ratios lie in between 20%-35%. In some cases, we use an advanced mode finding procedure,

where we sequentially loop over different optimization algorithms taking the previous found mode as initial

value for the next optimizer. In particular, we loop, in this order, over Dynare’s mode compute values equal

to 9 (CMA-ES), 8 (Nelson-Mead Simplex), 4 (csminwel), 7 (fminsearch) and 1 (fmincon). We then rely

on Dynare’s (very time-consuming) mode compute=6 optimizer, i.e. a “Monte Carlo Optimizer” to get a

well-behaved Hessian in the relevant parameter space. The intuition is that the Metropolis-Hastings algo-

rithm does not need to start from the posterior mode to converge to the posterior distribution. It is only

required to start from a point with a high posterior density value and to use an estimate of the covariance

matrix for the jumping distribution (actually any positive definite matrix suffices).3 All estimation results

and convergence diagnostics are available in the replication files.

3.3. Selection of observables

Ideally, economic intuition dictates the selection of observables that reveal the most useful information

about the parameters of interest. For example, in models with monetary neutrality, we know that nominal

variables have no real effects, so this needs to be taken into account when selecting observable variables.

Similarly, Mart́ınez-Garćıa et al. (2012) find that observing the terms of trade improves the strength of

identification in a open economy model. Likewise, Andreasen & Dang (2019) show that the price demand

elasticity can be estimated reliably in a standard log-linearized version of the New Keynesian model when

including firm profit as an observable in the estimation. However, Canova et al. (2014) warn that there

are important trade-offs when deciding to use hours or labor productivity together with output among the

observables in a variant of the Smets & Wouters (2007) model. They caution that different combinations of

variables may produce different responses to shocks. A point echoed by Mart́ınez-Garćıa et al. (2012) and

Mart́ınez-Garćıa & Wynne (2014) who additionally raise the issue of data availability limitations in practice.

3The replication files of An & Schorfheide (2007) reveal that they face the same problem in their estimation and overcome
this by using different step sizes for the numerical evaluation of second derivatives of the log-likelihood function. Other common
”tricks” to overcome a singular Hessian are to decompose the Hessian, set the eigenvalues smaller than or equal zero to some
small number, and then recompose it. We thank Johannes Pfeifer for pointing this out.
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So, unfortunately, there is no general guideline on selecting observables, as one needs to experiment with a

number of possible and feasible combinations of variables. Therefore, in our exercise, we are agnostic and use

a brute-force approach, i.e. we check all three diagnostics for all possible combinations of observable variables.

This basically mimics Canova et al. (2014), who select observables in a way that optimizes parameter

identification according to Komunjer & Ng (2011)’s rank criteria. As outlined above, this diagnostic is not

always available; hence, we also optimize along the lines of Iskrev (2010)’s moment and Qu & Tkachenko

(2012)’s spectrum rank criteria for a robust comparison. After having established which sets of observables

are theoretically favored in terms of local identification, we then use economic hindsight to choose feasible

sets and run the identification strength indicator on these.

4. Investment adjustment costs model

4.1. Model description

The Kim (2003) model is a variant of the canonical Real Business Cycle model with log utility extended

by two kinds of investment adjustment costs. First, multisectoral adjustment costs, governed by a parameter

θ, enter the budget constraint:

[
(1− SAV )

(
Ct

1− SAV

)1+θ
+ SAV

(
It

SAV

)1+θ
] 1

1+θ

︸ ︷︷ ︸
:=Y dt

= RKt U
K
t Kt−1 −ΨK

t Kt−1 (1)

where Ct is consumption, It is investment and SAV denotes the steady state savings rate, SAV = I
Y d

.

Similar to Huffman & Wynne (1999) we focus on θ > 0, i.e. a reverse CES technology, in order for the

production possibilities set to be convex. Note that for θ = 0 the transformation reduces to the standard

linear case, i.e. demand Y dt is equal to consumption and investment. Different to Kim (2003), we introduce

a cost, ΨK
t , of capital utilization per unit of physical capital. UKt denotes the capital utilization rate and we

use the following functional form: ΨK
t = (1−ψK)(UKt −UK) + ψK

2 (UKt −UK)2, such that the usual steady

state normalization, ΨK′′/ΨK′ = ψK/(1−ψK), applies. Physical (end-of-period) capital, Kt, is transformed

into effective (end-of-period) capital, Ks
t , according to Ks

t−1 = UKt Kt−1. Effective capital is then rented

to the representative firm at the gross rental rate RKt . The firm produces a homogeneous good using a

Cobb-Douglas production function, Yt = At(Ks
t−1)α, where At denotes total factor productivity.

Second, intertemporal adjustment costs, governed by a parameter κ, are introduced into the capital

accumulation equation, which involve a nonlinear substitution between the capital stock and investment.
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We consider two different specifications for this friction:

Kt =
[

(1− δ)K1−κ
t−1 + δ

(
υtIt
δ

)1−κ
] 1

1−κ

(2a)

Kt = (1− δ)Kt−1 + υtIt

(
1− S

(
It
It−1

))
(2b)

where δ denotes the depreciation rate and we set St := S
(

It
It−1

)
= κ

2

(
It
It−1
− 1
)2

, such that the usual

steady state normalization, St(1) = 0, S′t(1) = 0 and S′′t (1) > 0, applies. Equation (2a), which we call the

level specification, is also used by Kim (2003). It is based on Lucas & Prescott (1971) and involves costs in

terms of the first derivative of capital or, in other words, on the current level of investment. Equation (2b),

which we call the growth specification, is based on Christiano et al. (2005) and involves costs in terms

of investment changes between periods. Note that for κ = 0 we get the usual linear capital accumulation

specification, i.e. Kt = (1− δ)Kt−1 +υtIt, in both cases. Different to Kim (2003), we introduce investment-

specific technological change, υt, in the fashion of Greenwood et al. (2000) and Justiniano et al. (2010). Both

the log of At and the log of υt evolve according to AR(1) processes with persistence ρj and additive shocks,

εj,t, which are assumed to be normally distributed with zero mean and standard deviation σj (j = A, υ).

The model equations are summarized in table 1, where β = 1/(1 + RA/400) and Λt and ΛtQt denote the

Lagrange multipliers corresponding to equations (1) and (2) respectively. The upper parts of the first two

(
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)θ
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(
δKt
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(
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)
υt + βEt

[
Λt+1Qt+1υt+1

(
It+1
It

)2
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]
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βEt

[
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t+1 + (1− δ)Qt+1
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)κ)]
βEt

[
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(
RKt+1U

K
t+1 −ΨK

t+1 + (1− δ)Qt+1
)](

Ct
(1−SAV )·Y dt

)θ
Λt = C−1

t

RKt = ΨK′

t

RKt = αYt
Ks
t

Yt = Y dt + ΨK
t Kt−1

logAt = ρA logAt−1 + σAε
A
t

log υt = ρυ log υt−1 + συε
υ
t

Table 1: Model equations of investment adjustment costs model

equations correspond to the level specification of intertemporal investment adjustment costs, whereas the

lower parts are associated with the growth specification. The steady state is given by normalizations,

A = Q = UK = υ = 1, and equations RK =
(

1
β + δ − 1

)
Q
UK

, K =
(
αA
RK

) 1
1−α , I = δK

υ , Y = AKα,

C = (1 − SAV )Y and Λ = C−1. The calibration of α, β and δ is based on a steady state investment
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to output ratio, I/Y , of 0.25, a steady state capital productivity, K/Y , of 10 and an annualized steady

state interest rate, RA, of 2. ψK is implicitly defined via the first order necessary conditions with respect

to Kt and UKt . θ and κ are based on values taken from Ratto & Iskrev (2011), whereas the parameters

of the stochastic processes are chosen symmetrically with mild persistence and amplitude of shocks. The

calibration and prior specification of parameters is summarized in table 2.

Parameters Bounds Prior Specification
Symbol θ0 Lower Upper Density Mean Std. deviation

θ 1.5 1e-8 10 Gamma 1.5 0.75
κ 2 1e-8 10 Gamma 2 1.5
α 0.3 1e-8 0.9999 Normal 0.3 0.05
δ 0.025 1e-8 0.9999 Uniform 0 1
RA 2 1e-8 10 Gamma 2 0.25
ρA 0.5 1e-8 0.9999 Beta 0.5 0.1
σA 0.6 1e-8 10 Inverse Gamma 0.6 2
ψK 0.97 1e-8 0.9999 Uniform 0 1
ρυ 0.5 1e-8 0.9999 Beta 0.5 0.1
συ 0.6 1e-8 10 Inverse Gamma 0.6 2

Table 2: Parameters, priors and bounds for investment adjustment costs model

4.2. Model variants

To check the sensitivity of local identifiability to changes in observables, model assumptions, functional

specifications and shocks, we distinguish three different model scenarios and consider all possible one- and

two-set combinations of model variables as observables. Our focus lies on observable variables that are

commonly used in the literature; namely, output, consumption, investment and the return of capital.4 Our

first scenario, called baseline, corresponds to the original model specification of Kim (2003). Accordingly,

we switch off both capital utilization and investment-specific technological change. In our second scenario,

called capital utilization, we analyze the effect on local identification of adding capital utilization costs

to the baseline scenario. Likewise, in our third scenario, called investment shock, we add investment-

specific technological change to the baseline case. Note that in the first two scenarios there is only one

structural shock in the model, whereas in the last scenario there are two. Lastly, each scenario is run with

either the level or growth specification of intertemporal investment adjustment costs. The following

sensitivity analysis of identification as a model property is based on the calibrated local point θ0 given in

the second column of table 2. The replication files also contain the local identifiability analysis for the prior

mean as well as 100 random draws from the prior domain. As the results are almost identical for all model

variants, we focus on the calibrated values in our exposition.

4For the sake of completeness, we also analyze (usually unobserved) variables like technology, capital or the auxiliary
Lagrange multipliers. We like to point out that by observing marginal utility Λt or Tobin’s Qt combined with any other variable,
one is able to locally identify all model parameters independent of the specification of intertemporal investment adjustment
costs or model scenario. Observing capital or technology, on the other hand, does not solve the lack of identification in the
considered scenarios. The exact results can be found in the replication files.
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4.3. Theoretical identification

Table 3 summarizes whether the required rank conditions are fulfilled for the different scenarios and

combinations of observable variables at θ0. As expected and analytically shown by Kim (2003), θ and κ

cannot be identified jointly in the baseline scenario with the level specification. The growth specifi-

cation, however, allows one to identify these parameters for many choices of feasible observable variables.

In particular, among single observable variables, consumption Ct (and not output Yt) yields a locally fully

identified model. Intuitively, the growth specification adds another state variable into the model in terms

of lagged investment. The coefficients of lagged investment in the decision rules depend on the intertemporal

adjustment costs parameter κ in a manner that is distinct from the multisectoral adjustment costs parameter

θ. Hence, we can distinguish the dynamics of multisectoral level adjustment costs from intertemporal growth

adjustment costs. Our other two scenarios, capital utilization and investment shock, individually

introduce sufficient internal dynamics into the optimal allocation of investment and capital. These features

tend to smooth the adjustment of the rental rate of capital, and therefore, enhance identifiability of adjust-

ment cost parameters κ and θ. Almost all pairs of variables yield full rank in these scenarios, independent

of whether we consider the level or the growth specification. Note that single observable variables fail to

identify all model parameters as κ and θ are co-linear with either the capital utilization or the investment

shock process parameters.

Baseline Capital Utilization Investment Shock
Level Growth Level Growth Level Growth

mom min spec mom min spec mom min spec mom min spec mom min spec mom min spec
Y [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ]
C [κθ] err [κθ] XX XX XX [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ]
I [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ]
RK [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] [κθ] [κ] [κθ] err [κθ] [κθ] err [κθ]
K [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ]
Λ [κθ] err [κθ] XX XX XX [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ]
Q [κθ] err [κθ] [κθ] [κθ] [κθ] [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ]
A [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ] [κθ] err [κθ]
UK - - - - - - [κθ] err [κθ] [κθ] [κθ] [κθ] - - - - - -
υ - - - - - - - - - - - - [κθ] err [κθ] [κθ] err [κθ]

Y,C [κθ] [κθ] [κθ] XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
Y, I [κθ] [κθ] [κθ] XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
Y,RK [κθ] [κθ] [κθ] XX XX XX [κθ] [κθ] [κθ] XX XX XX [κθ] [κθ] [κθ] XX XX XX
C, I [κθ] [κθ] [κθ] XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
C,RK [κθ] [κθ] [κθ] XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
I, RK [κθ] [κθ] [κθ] XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

Notes: mom corresponds to Iskrev (2010)’s, min to Komunjer & Ng (2011)’s and spec to Qu & Tkachenko (2012)’s rank criteria. A
XX indicates that all model parameters are theoretically identifiable at θ0 given in table 2. [κθ] indicates that both κ and θ cannot
be identified jointly or are co-linear with respect to other parameters, whereas a single [κ] or [θ] implies non-identification of that
parameter. err indicates that the criteria cannot be computed (mostly the order condition is not met), whereas a - indicates that this
set of variables is not available in the specific scenario.

Table 3: Rank checks for investment adjustment costs model

Moreover, in the replication files we also consider the effect of a different utility function, internal or

external habit, labor choice and monetary policy rules on parameter identification of θ and κ. We briefly

summarize our findings. A CRRA utility function or the inclusion of internal/external habit formation does
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not change the above results.5 The inclusion of labor (as already shown by Kim (2003)) facilitates parameter

identification of θ and κ in both cases, but adds other parameters that can only be identified by observing

either hours or wages. Extending the baseline model with respect to bond holdings requires the inclusion

of a Taylor rule. This also provides means for identifying the investment adjustment costs parameters in

both the level and growth specification, however, for several combinations of observables the parameters

of the monetary rule are not identified, a topic we study in more detail in section 5.

4.4. Weak identification

Tables 4 and 5 provide insight into the strength of identification according to the Bayesian learning

rate indicator of Koop et al. (2013) for the baseline scenario with observable Ct and the investment

shock scenario with observable Yt and Ct. We choose these scenarios due to the fact that our focus is on

applied researchers who use Dynare for Bayesian estimation. Accordingly, we do not analyze the strength of

identification in the capital utilization scenario as this requires techniques to estimate singular DSGE

models, which cannot be done with Dynare out-of-the-box (yet). The simulation and estimation exercise

reveals that the strength of identification of the investment adjustment costs parameters, θ and κ, is weak

in both baseline level and baseline growth scenarios as well as the investment shock level case,

since the rates at which the posterior precisions are updated are slower than the sample size change. That

is, the average posterior precision values in table 4 tend towards zero instead of a constant value. This is also

evident by looking at the convergence ratios in table 5 as these stay close to 1 and do not tend towards the

change in sample size of 3. The investment shock growth specification, however, is the exception, as κ

and θ are both strongly identifiable: The average precisions tend towards a constant and the convergence

ratios fluctuate around 3. Regarding the other model parameters we find mixed results. In all cases under

consideration the strength of identification of RA (and hence β) is weak, which is a common finding in the

literature (Morris, 2017). In the (unidentified) baseline level scenario we see that only ρA is strongly

identifiable. This confirms that estimating non-identified models yields severe problems in the estimation of

other, actually identified model parameters. Accordingly, in the (identified) baseline growth scenario α,

δ, ρA and σA are (more or less) strongly identified. Likewise, the growth specification in the investment

shock scenario performs better than the level one as the convergence ratios are closer to 3.

4.5. Summary

To sum up, in all our experiments we find that the growth specification of intertemporal investment

adjustment costs is superior to the level specification in terms of theoretical identification. Moreover,

5In some cases we find that the identification criteria yield different results. We experimented with the settings and found
that the differences are driven by numerical thresholds, tolerance levels and the method used to normalize the Jacobians for
rank computations.
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T α RA δ ρA σA θ κ ρυ συ

BASELINE LEVEL, OBSERVABLE [Ct]
100 5.02419 0.16006 68.06352 2.35966 2.23979 0.01789 0.00460 - -
300 1.66330 0.05318 10.19060 1.66202 0.37313 0.00576 0.00227 - -
900 0.60317 0.01777 4.79942 1.37207 0.24600 0.00194 0.00066 - -
2700 0.23070 0.00594 2.50897 1.28453 0.16133 0.00066 0.00015 - -
8100 0.10292 0.00199 1.48975 1.29131 0.06690 0.00023 0.00005 - -

BASELINE GROWTH, OBSERVABLE [Ct]
100 5.09980 0.15940 68.82651 2.13940 2.46914 0.01751 0.00422 - -
300 1.96554 0.05286 12.74101 1.40185 0.40590 0.00587 0.00142 - -
900 0.71330 0.01779 5.90759 0.85181 0.28399 0.00198 0.00043 - -
2700 0.32161 0.00592 3.57656 0.57919 0.19469 0.00072 0.00018 - -
8100 0.21194 0.00197 3.67273 0.35742 0.09412 0.00021 0.00006 - -

INVESTMENT SHOCK LEVEL, OBSERVABLE [Yt, Ct]
100 79.05959 0.16094 225.54380 2.22210 0.90266 0.01976 0.05555 2.04271 0.72635
300 60.78898 0.05334 200.61253 1.53605 1.04589 0.00603 0.03482 1.57010 0.22718
900 36.43431 0.01788 200.06671 1.36422 1.16714 0.00224 0.01378 1.39247 0.12846
2700 17.94476 0.00602 99.71930 1.34674 0.80680 0.00078 0.00408 1.32375 0.06071
8100 7.11469 0.00205 61.69216 1.33956 0.83797 0.00036 0.00190 1.32053 0.02746

INVESTMENT SHOCK GROWTH, OBSERVABLE [Yt, Ct]
100 71.67930 0.16314 334.96703 2.33540 0.95497 0.18745 0.18640 1.85807 1.25801
300 58.08013 0.05277 207.52371 1.57582 0.87680 0.06891 0.11989 1.38878 0.48674
900 36.47654 0.01776 227.33669 1.38348 1.07441 0.04741 0.09728 1.30844 0.43364
2700 17.90416 0.00615 116.05847 1.35925 0.74264 0.05246 0.09988 1.27667 0.39086
8100 7.74727 0.00244 85.15640 1.35892 0.82375 0.04136 0.08509 1.26054 0.34923

Table 4: Average posterior precisions for investment adjustment costs model

in the Baseline growth scenario, there is a single best choice as observable: consumption (and not

output or investment) is able to locally identify all parameters. Lastly, investment-specific technological

change improves the strength of model parameters. Therefore, we provide theoretical support (from an

identification point-of-view) for using both Christiano et al. (2005)’s growth specification of investment

adjustment costs and Greenwood et al. (2000)’s investment-specific technological change in modern DSGE

models.

5. Monetary model

5.1. Model description

The An & Schorfheide (2007) model is a prototypical New Keynesian DSGE model and consists of a

representative household purchasing a basket of differentiated goods using a Dixit-Stiglitz type aggrega-

tor and supplying homogeneous labor services. The differentiated goods are supplied by monopolistically

competitive firms using only labor services according to a linear production function. Each firm sets prices

conforming to the Rotemberg pricing assumption such that changing prices entails a real cost in terms of

goods. Labor productivity, At, is the driving force of the economy and evolves according to a unit root

process, i.e. log (At/At−1) = log (γ) + log (zt), where γ denotes the steady state growth rate of the economy.

Hence, yt = Yt/At stands for detrended output and ct = Ct/At for detrended consumption. The monetary
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dT α RA δ ρA σA θ κ ρυ συ

BASELINE LEVEL, OBSERVABLE [Ct]
300/100 0.993 0.997 0.449 2.113 0.500 0.966 1.479 - -
900/300 1.088 1.003 1.413 2.477 1.978 1.009 0.868 - -
2700/900 1.147 1.002 1.568 2.809 1.967 1.017 0.693 - -
8100/2700 1.338 1.004 1.781 3.016 1.244 1.063 0.927 - -

BASELINE GROWTH, OBSERVABLE [Ct]
300/100 1.156 0.995 0.555 1.966 0.493 1.005 1.010 - -
900/300 1.089 1.010 1.391 1.823 2.099 1.012 0.903 - -
2700/900 1.353 0.998 1.816 2.040 2.057 1.095 1.230 - -
8100/2700 1.977 0.998 3.081 1.851 1.450 0.892 1.102 - -

INVESTMENT SHOCK LEVEL, OBSERVABLE [Yt, Ct]
300/100 2.307 0.994 2.668 2.074 3.476 0.915 1.881 2.306 0.938
900/300 1.798 1.006 2.992 2.664 3.348 1.113 1.187 2.661 1.696
2700/900 1.478 1.011 1.495 2.962 2.074 1.041 0.889 2.852 1.418
8100/2700 1.189 1.020 1.856 2.984 3.116 1.403 1.399 2.993 1.357

INVESTMENT SHOCK GROWTH, OBSERVABLE [Yt, Ct]
300/100 2.431 0.970 1.859 2.024 2.754 1.103 1.930 2.242 1.161
900/300 1.884 1.010 3.286 2.634 3.676 2.064 2.434 2.826 2.673
2700/900 1.473 1.039 1.532 2.947 2.074 3.320 3.080 2.927 2.704
8100/2700 1.298 1.188 2.201 2.999 3.328 2.365 2.556 2.962 2.680

Table 5: Convergence ratios for posterior precisions for investment adjustment costs model

authority follows a Taylor rule for the nominal interest rate Rt and real government spending Gt is assumed

to evolve stochastically as a ratio of output gt := (1 − Gt/Yt)−1. Uncertainty is introduced via random

fluctuations in productivity growth, government spending and a monetary policy shock.

We extend the model in three common directions. First, we add a preference shock, ζt, to the utility

function that shifts the discount factor in the intertemporal optimization problem of the household without

changing the intratemporal labor supply decision. Therefore, the detrended Lagrange multiplier corre-

sponding to marginal consumption utility is given by λt = ζtc
−τ
t . Second, the Rotemberg price adjustment

function of the j-th intermediate firm, act(j) = φ
2

(
Pt(j)
Pt−1(j) − Γt−1

)2
yt(j), follows either a full or a partial

indexation scheme:

Γt−1 = π∗ (full indexation) (3a)

Γt−1 = πι
p

t−1π
∗1−ιp (partial indexation) (3b)

where π∗ denotes target inflation. The first scheme corresponds to the original specification of An &

Schorfheide (2007), whereas the second one is in the fashion of Smets & Wouters (2007) or Born & Pfeifer

(2019). Third, we consider four different monetary policy rules that differ in the definition of the output-gap:

(i) deviation from the output value under flexible prices but with the monopoly power distortion intact, (ii)

deviation from the steady state value of output, (iii) deviation from the growth trend and (iv) the Smets &

Wouters (2007) rule which combines (i) with differences in growth rates of output and the flex-price output:
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R∗t /R = (πt/π∗)ψπ (yt/y∗t )ψy (flex-price) (4a)

R∗t /R = (πt/π∗)ψπ (yt/y)ψy (steady state) (4b)

R∗t /R = (πt/π∗)ψπ (zt · yt/yt−1)ψy (growth) (4c)

R∗t /R = (πt/π∗)ψπ (yt/y∗t )ψy
(
yt/yt−1

y∗t /y
∗
t−1

)ψ∆y

(SW) (4d)

Note that π∗ = 1 + πA/400 is the target inflation rate and y∗t = (1− ν) 1
τ gt the output under flexible prices

(φ = 0) but with the monopoly power distortion intact. All shocks, εj,t(j = R, g, z, ζ), are assumed to be

normally distributed with zero mean and standard deviation σj . The model equations are summarized in

table 6, where γ = 1 + γQ/100, β = (1 + rA/400)−1 and we added measurement equations for the quarterly

output growth rate Y GRt, the annualized inflation rate INFLt and the annualized interest rate INTt. The

λt = ζtc
−τ
t

λt = βEt

[
λt+1

Rt
γzt+1πt+1

]
1 = 1

ν

(
1− (λt/ζt)−1)+ φ(πt − Γt−1)πt − φ

2ν (πt − Γt−1)2 − φβEt
[
λt+1
λt

yt+1
yt

(πt+1 − Γt)πt+1

]
yt = ct +

(
1− 1

gt

)
yt + φ

2 (πt − Γt−1)2yt

log (gt) = (1− ρg) log (g) + ρg log (gt−1) + εg,t
log (zt) = ρz log (zt−1) + εz,t
log (ζt) = (1− ρζ) log (ζ) + ρζ log (ζt−1) + εζ,t
Rt = R∗

1−ρR
t RρRt−1 exp {εR,t}

Y GRt = γQ + 100
[
log
(

yt
yt−1

)
+ log

(
zt
z

)]
INFLt = πA + 400 log

(
πt
π

)
INTt = πA + rA + 4γQ + 400 log

(
Rt
R

)
Table 6: Model equations of monetary model

steady state is given by normalizations, z = ζ = 1, π = π∗, g = g∗, and equations R = γzπ
β , c = (1 − ν) 1

τ ,

y = g ·c, Y GR = γQ, INFL = πA, INT = πA+rA+4γQ. The calibration, priors and bounds for the model

parameters are summarized in table 7 and are taken from An & Schorfheide (2007) and Smets & Wouters

(2007). Note that a log-linearization and straightforward manipulation of equations yield the following New

Keynesian IS and Phillips curves:

ŷt − ĝt = Et[ŷt+1]− Et[ĝt+1]− 1
τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1] + Et[ζ̂t+1]− ζ̂t

)
(5)(

π̂ − Γ̂t−1

)
= β

(
Et[π̂t+1]− Γ̂t

)
+ τ

(1− ν)
π∗2νφ︸ ︷︷ ︸
=:κ

(ŷt − ĝt) (6)
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Parameters Prior Specification Bounds
Symbol θ0 Density Mean Std. Deviation Lower Upper
rA 1.00 Gamma 0.80 0.50 1e-5 10
πA 3.20 Gamma 4.00 2.00 1e-5 20
γQ 0.55 Normal 0.40 0.20 -5 5
τ 2.00 Gamma 2.00 0.50 1e-5 10
ν 0.10 Beta 0.10 0.05 1e-5 0.99999
ψπ 1.50 Gamma 1.50 0.25 1e-5 10
ψy 0.125 Gamma 0.50 0.25 1e-5 10
ψ∆y 0.2 Gamma 0.20 0.15 1e-5 10
ρR 0.75 Beta 0.50 0.20 1e-5 0.99999
ρg 0.95 Beta 0.80 0.10 1e-5 0.99999
ρz 0.90 Beta 0.66 0.15 1e-5 0.99999

100σR 0.2 Inverse Gamma 0.30 2.00 1e-8 5
100σg 0.6 Inverse Gamma 0.40 2.00 1e-8 5
100σz 0.3 Inverse Gamma 0.40 2.00 1e-8 5
ιp 0.5 Beta 0.50 0.15 1e-8 1
ρζ 0.75 Beta 0.50 0.20 1e-5 0.99999

100σζ 0.2 Inverse Gamma 0.30 2.00 1e-8 5
φ 50 - - - - -

1/g∗ 0.85 - - - - -

Table 7: Parameters, priors and bounds for monetary model

where a hat variable denotes log deviations from steady state. In the case of full inflation indexation, Γ̂t−1 =

Γ̂t = 0, the New Keynesian Phillips curve is forward-looking, whereas partial inflation indexation adds a

backward-looking component, as Γ̂t−1 = ιpπ̂t−1. Now, the issues we discuss in the introduction become

obvious. That is, ν and φ are not independent parameters, there is an infinite number of combinations of

the elasticity of demand, 1/ν, and the price stickiness parameter, φ, which yield the exact same value for

the slope κ of the New Keynesian Phillips curve. Likewise, the steady state government spending target g∗

does not enter the linearized solution. As our focus in this section is on the monetary policy parameters,

we fix φ and g∗ for now and discuss possible ways to identify ν, φ and g∗ in the summary subsection.

5.2. Model variants

In our experiments, we distinguish three different model scenarios. Our first scenario, called baseline,

corresponds to the original model specification of An & Schorfheide (2007). Accordingly, we consider full

inflation indexation and switch off the discount factor shifter. In our second scenario, called partial

indexation, we analyze the effect of adding the partial inflation indexation scheme to the baseline scenario.

In our third scenario, called preference shock, we add the discount factor shifter to the baseline model.

We run all scenarios under the four different monetary policy rules. We only report the results for observable

variables Y GRt, INFLt and INTt here, as, on the one hand, we find that γQ can only be identified from

observing Y GRt, and, on the other hand, other combinations of model variables do not change our results

significantly. We refer to the replication files for the full set of results, i.e. for all possible combinations of

up to three variables. The following sensitivity analysis of identification as a model property is based on

the calibrated local point θ0 given in the second column of table 7. The replication files also contain the
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local identifiability analysis for the prior mean as well as 100 random draws from the prior domain. As the

results are almost identical for all model variants, we focus on the calibrated values in our exposition.

5.3. Theoretical identification

Table 8 summarizes whether the rank requirements are fulfilled for the different scenarios and monetary

policy rules at θ0. As shown by e.g. Komunjer & Ng (2011) or Qu & Tkachenko (2012), the monetary

policy parameters (ψy, ψπ, ρR, σR) cannot be identified in the baseline specification when using the

flex-price or the SW monetary rule, whereas in the steady state or growth specifications these

parameters are locally identifiable. Our analysis shows two more ways to solve the lack of identification,

which are, moreover, independent of the functional form of the output-gap: adding a partial inflation

indexation scheme and/or a preference shock.6 Intuitively, the introduction of partial indexation results in

a dynamic inflation specification in equation (6) that will also depend on past inflation, where the degree

of indexation determines how backward looking the inflation process is. This, of course, has an effect

on the transmission channel of monetary policy, as the price dispersion between individual prices of the

monopolistic competitors will be much smaller compared to a constant price setting behavior. In contrast,

the preference shock basically resembles a demand shock, as it shifts the effective discount factor that

determines the intertemporal substitution decisions of households. According to the IS curve in equation

(5) and the Phillips curve in equation (6), a positive impulse in the preference shifter leads to a positive

impact on consumption and output, but also to some inflationary pressures and a partial crowding out

of investment, see also Smets & Wouters (2003) for a similar result. Therefore, the overall effect on the

output-gap and on the nominal interest rate add sufficient internal dynamics to the transmission channel of

monetary policy to identify the Taylor rule parameters in all scenarios separately.

Monetary Policy Specification
Scenario flex-price steady state growth SW
Baseline [ψπ , ψy , ρR, σR] XX XX [ψπ , ψy , ρR, σR]
Partial Indexation XX XX XX XX
Preference Shock XX XX XX XX
Partial Indexation and Preference Shock XX XX XX XX

Notes: Observable variables are Y GRt, INFLt and INTt. All three rank criteria come to the same conclusion, so we do not separately
display the result. A XX indicates that all model parameters are theoretically identifiable, whereas [ψπ , ψy , ρR, ρσ ] indicates that
these parameters cannot be identified jointly.

Table 8: Rank checks for monetary model

5.4. Weak identification

Tables 9 and 10 give insight into the strength of identification according to the Bayesian learning rate

indicator of Koop et al. (2013) for the flex-price baseline, steady state baseline, flex-price pref-

6Kocicecki & Kolasa (2018) also show that spillovers from public spending to productivity can be an alternative way to
ensure local identification in the baseline flex-price scenario.
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erence shock and flex-price indexation scenarios. We focus in particular on these scenarios as the

non-identified model of An & Schorfheide (2007) corresponds to our flex-price baseline scenario and

the SW rule behaves similarly to the flex-price specification. Our simulation and estimation exercise

shows that ψπ and ψy are weakly identifiable in the original (theoretically non-identified) model, since the

rates at which the posterior precisions are updated are slower than the sample size. That is, the average

posterior precision values in table 9 tend towards zero instead of constant values, and, similarly, the conver-

gence ratios in table 10 do not tend towards the change in sample size of 3. Here it becomes evident that

estimating non-identified models may also introduce problems in the estimation of other, actually identi-

fied model parameters. In particular, this is accompanied by many difficulties in the initialization of the

proposal distribution for the MCMC algorithm as finding the mode and a positive definite Hessian at the

mode is tedious, see section 3.2 on how we overcome this issue. Albeit, this is an inherent problem of many

(even identified) DSGE models, lack of identification of some parameters aggravates this. If, however, the

monetary policy authority reacts to output deviations from steady state all parameters, including the ones

in the Taylor rule, are strongly identified. The same is true for the flex-price Taylor rule, when we introduce

a partial inflation indexation scheme. A preference shock, on the other hand, leaves several parameters (ψπ,

ψy, ρζ and σζ) weakly identified.
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PARAMETERS
T rA πA γQ τ ν ψπ ψy ρR ρg ρz 100σR 100σg 100σz ρζ 100σζ ιp

BASELINE WITH FLEX-PRICE TAYLOR RULE (*)
100 0.061 0.270 0.461 0.068 38.082 0.228 2.818 5.493 3.363 29.575 40.687 3.981 11.028 - - -
300 0.034 0.146 0.228 0.049 32.200 0.075 1.141 4.722 8.228 19.407 36.607 5.294 10.092 - - -
900 0.020 0.085 0.155 0.034 24.358 0.031 0.722 4.746 9.009 19.107 43.514 5.551 11.034 - - -
2700 0.018 0.075 0.131 0.036 25.799 0.010 0.262 4.821 8.305 20.746 45.198 5.535 14.533 - - -
8100 0.016 0.068 0.121 0.037 27.490 0.004 0.108 4.449 8.183 21.107 43.708 5.567 15.825 - - -

BASELINE WITH STEADY STATE TAYLOR RULE
100 0.055 0.145 0.444 0.055 40.977 0.279 2.779 4.398 3.865 34.385 40.505 3.206 9.897 - - -
300 0.030 0.049 0.226 0.050 31.939 0.101 0.853 3.678 17.043 14.894 35.231 3.558 5.383 - - -
900 0.017 0.046 0.145 0.024 18.887 0.075 1.748 4.164 17.572 17.036 43.902 4.465 5.656 - - -
2700 0.016 0.045 0.122 0.022 16.903 0.054 1.471 4.197 14.471 17.612 45.664 4.491 5.992 - - -
8100 0.015 0.043 0.125 0.021 17.104 0.058 1.778 3.940 13.030 16.057 43.692 4.628 6.020 - - -

PREFERENCE SHOCK WITH FLEX-PRICE TAYLOR RULE (*)
100 0.063 0.268 0.481 0.087 61.319 0.221 2.025 4.037 2.278 20.611 32.155 1.751 10.793 0.276 0.339 -
300 0.034 0.157 0.241 0.040 32.052 0.077 1.067 4.426 4.122 19.996 35.010 3.069 9.786 0.086 0.241 -
900 0.022 0.092 0.151 0.038 27.964 0.028 0.615 4.716 4.468 20.622 39.890 1.802 10.865 0.031 0.094 -
2700 0.023 0.086 0.153 0.034 22.883 0.010 0.271 4.080 7.164 18.756 41.170 1.228 11.017 0.013 0.055 -
8100 0.017 0.070 0.117 0.036 26.957 0.003 0.084 4.599 8.017 21.936 42.120 1.331 14.445 0.005 0.030 -

INDEXATION WITH FLEX-PRICE TAYLOR RULE (*)
100 0.061 0.114 0.451 0.065 47.761 0.280 0.991 7.112 3.136 20.011 38.531 4.058 4.586 - - 2.998
300 0.035 0.064 0.232 0.050 41.508 0.110 0.443 5.540 7.330 16.998 33.627 5.341 5.440 - - 2.599
900 0.020 0.035 0.148 0.029 26.825 0.063 0.341 5.555 8.928 18.567 40.908 5.454 4.947 - - 2.533
2700 0.018 0.030 0.122 0.033 27.352 0.027 0.182 5.442 8.287 21.504 40.337 5.572 6.773 - - 2.613
8100 0.018 0.032 0.129 0.033 28.766 0.023 0.154 5.070 8.175 22.077 39.142 5.596 6.651 - - 2.458
Notes: Observable variables are Y GRt, INFLt and INTt. A (*) indicates cases where we used an advanced mode finding procedure, as outlined in section 3.2.

Table 9: Average posterior precisions for monetary model
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PARAMETERS
dT rA πA γQ τ ν ψπ ψy ρR ρg ρz 100σR 100σg 100σz ρζ 100σζ ιp

BASELINE WITH FLEX-PRICE TAYLOR RULE (*)
300/100 1.664 1.619 1.486 2.190 2.537 0.980 1.214 2.579 7.339 1.969 2.699 3.990 2.746 - - -
900/300 1.806 1.747 2.034 2.045 2.269 1.262 1.900 3.015 3.285 2.954 3.566 3.145 3.280 - - -
2700/900 2.685 2.650 2.534 3.242 3.178 0.940 1.089 3.048 2.766 3.257 3.116 2.991 3.951 - - -
8100/2700 2.618 2.709 2.767 3.050 3.197 1.237 1.233 2.768 2.956 3.052 2.901 3.017 3.267 - - -

BASELINE WITH STEADY STATE TAYLOR RULE
300/100 1.615 1.020 1.527 2.697 2.338 1.084 0.921 2.509 13.228 1.299 2.609 3.329 1.632 - - -
900/300 1.720 2.811 1.929 1.479 1.774 2.248 6.147 3.396 3.093 3.431 3.738 3.765 3.152 - - -
2700/900 2.725 2.947 2.524 2.664 2.685 2.137 2.525 3.023 2.470 3.102 3.120 3.018 3.178 - - -
8100/2700 2.948 2.878 3.066 2.939 3.036 3.212 3.626 2.817 2.701 2.735 2.870 3.091 3.014 - - -

PREFERENCE SHOCK WITH FLEX-PRICE TAYLOR RULE (*)
300/100 1.605 1.759 1.504 1.374 1.568 1.048 1.581 3.289 5.427 2.911 3.266 5.257 2.720 0.934 2.129 -
900/300 1.951 1.752 1.883 2.866 2.617 1.083 1.728 3.197 3.252 3.094 3.418 1.762 3.331 1.092 1.176 -
2700/900 3.073 2.805 3.029 2.696 2.455 1.088 1.325 2.595 4.810 2.729 3.096 2.044 3.042 1.223 1.764 -
8100/2700 2.289 2.444 2.307 3.209 3.534 0.924 0.925 3.382 3.357 3.509 3.069 3.251 3.933 1.233 1.616 -

INDEXATION WITH FLEX-PRICE TAYLOR RULE (*)
300/100 1.738 1.691 1.541 2.294 2.607 1.177 1.341 2.337 7.011 2.548 2.618 3.949 3.558 - - 2.601
900/300 1.719 1.642 1.919 1.721 1.939 1.716 2.313 3.008 3.654 3.277 3.650 3.064 2.728 - - 2.924
2700/900 2.664 2.580 2.466 3.425 3.059 1.307 1.602 2.939 2.785 3.475 2.958 3.065 4.107 - - 3.095
8100/2700 3.051 3.140 3.177 2.992 3.155 2.509 2.531 2.795 2.960 3.080 2.911 3.013 2.946 - - 2.822
Notes: Observable variables are Y GRt, INFLt and INTt. A (*) indicates cases where we used an advanced mode finding procedure, as outlined in section 3.2.

Table 10: Convergence ratios of posterior precisions for monetary model
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5.5. Summary

To sum up, in all our experiments we provide theoretical support (in terms of identification) for including

both a partial inflation indexation scheme as well as a preference shock into modern DSGE models.

These features solve the theoretical lack of identification of the Taylor rule parameters independent of the

output-gap specification. However, only partial inflation indexation enhances the overall strength of

identification of all model parameters, whereas the preference shock leaves several model parameters

weakly identifiable (and estimable). Regarding the selection of observables, we find that some parameters,

e.g. the average growth rate of technology, are only identifiable when introducing a specific measurement

equation. This, of course, provides researchers another option to fine-tune the identifiability of their models

(possibly with another eye to data availability). In this line of thought, we could have also introduced an

additional equation that pins down target government spending g∗, otherwise it drops out from the linearized

solution. Lastly, as mentioned in the beginning of the section, φ and ν are co-linear, as they jointly determine

the slope of the New Keynesian Phillips curve. Our model variants are not able to separately identify these

parameters, which is a common finding in linearized New Keynesian DSGE models, see e.g. Clarida et al.

(1999), Ireland (2004) or Levin et al. (2003). We refer to Mutschler (2015) who shows that a higher-order

approximation of the solution yields means to distinguish these parameters even in the Baseline flex-

price scenario.

6. Implications for model building

Our results are relevant from a model building perspective, because it is crucial for macroeconomists

to know what model features, frictions and shocks can coexist within models without redundancy. In our

example models, we focus on four choices a researcher can make that matter for identification.

6.1. Choice of observables

First, both theoretical lack of and empirical weak identification are often due to an unfortunate choice

of observables. In some cases, like the steady state parameters in our monetary model, this seems obvious.

In other cases, like in our investment-adjustment costs model, one should use a specific observable variable

(e.g. consumption) instead of other, commonly used ones (e.g. output). As the literature on the choice of

observables is still very sparse (Canova et al., 2014; Guerron-Quintana, 2010; Mart́ınez-Garćıa et al., 2012),

we advocate (and show means) to do a brute-force sensitivity analysis before taking a model to actual data.

In this line of thought, Kim (2003) already pointed out, that information on the relative price of investment

can also solve the identification problem and hence, it is not surprising that current papers include this price

in estimated DSGE models. However, there are trade-offs in terms of model-implied dynamics and empirical

fit. For instance, Schmitt-Grohé & Uribe (2012) use the relative price of investment as an observable and find
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that their results regarding the macroeconomic effects of investment-specific shocks are in sharp contrast

with the ones obtained by Justiniano et al. (2010) who do not include this variable in their estimation.

Therefore, it is important, on the one hand, to establish which observables are theoretically favored in terms

of identification, but, on the other hand, to use economic hindsight and model simulations to select the

variables that best address the key issues one is interested in. Also, data availability and limitations need to

be taken care of and one has to correctly transform empirical data to match the ´model variables, we refer

to Pfeifer (2018) for excellent hands-on advice on this.

6.2. Functional specifications

Second, our finding that the investment-growth specification of intertemporal costs in the fashion of

Christiano et al. (2005) is not subject to functional equivalence with multisectoral costs is useful, especially

since this specification is now the benchmark in the quantitative DSGE literature. Accordingly, Christiano

et al. (2011) compare the growth and level specifications of investment adjustment costs in their study of the

government-spending multiplier at the zero lower bound. They find, while the growth specification implies a

smaller response to investment (as it penalizes changes in investment directly), the dynamic responses of the

other variables are similar, such that their main results are robust. Likewise, the monetary policy rule needs

to be specified carefully and there is no consensus on the right functional specification. We follow up on the

fact that economists employ quite different concepts and definitions for the output-gap (Kiley, 2013), and

show how this matters for identification. This is also consistent with Hirose & Naganuma (2010)’s findings,

who argue that the estimated output gap is sensitive to the specification of monetary policy rules.

6.3. Model features

Third, adding model features provides a researcher with more flexibility in functional specifications.

Accordingly, our findings show that by adding a cost on capital utilization one is able to identify models

with both multisectoral and intertemporal costs. A recent example of this is Moura (2018) who is able to

estimate both types of costs to study investment price rigidities in a multisectoral DSGE model. Likewise,

partial inflation indexation identifies our monetary model, independent of the concrete specification of the

Taylor rule, and even enhances the strength of identification of all model parameters. This finding mirrors

the fact that history dependence of inflation in the New Keynesian Phillips curve improves the fit of an

otherwise forward-looking model, as emphasized by Smets & Wouters (2003, 2007).

6.4. Choice of shocks

Fourth, introducing additional innovations, like structural shocks to investment-specific technological

change or to the preference discount rate, plays an important role not only for the model dynamics, but also

in terms of theoretical and empirical parameter identifiability. This finding is of a more general nature and

needs some discussion.
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On the one hand, shocks introduce wedges and different internal dynamics to the structure of a model.

For example, additional shocks add additive components to the variance decomposition. If a previously

unidentified parameter influences this additional component, there is a way to identify this parameter from

the second moments or spectral properties of data. Of course, it is important that the additional component

is not simply a linear combination of other components of already included shocks. Similar to our findings,

Mart́ınez-Garćıa & Wynne (2014, p. 166) argue that a productivity shock has the potential to introduce

differences in models that can be exploited to tell them apart. Equivalently, Canova et al. (2014, p. 435)

and Guerron-Quintana (2010) provide illustrative three equation models to show analytically that different

shocks carry different information for parameter identification. Our example models, however, are not

analytically but empirically motivated. The results in this paper, therefore, resemble the findings that (1)

general equilibrium models perform poorly when explaining investment dynamics without heavily relying

on investment specific shocks (Justiniano et al., 2011; Kamber et al., 2016), (2) the variability of inflation is

to a large extent determined by preference shocks (Smets & Wouters, 2003) and (3) shocks to the preference

discount rate play an important role in getting the interest rate fall to zero (Christiano et al., 2011).

On the other hand, in practice, the number of shocks limits the number of observable variables one can

choose. Applied researchers may be tempted to add non-structural shocks such as measurement errors,

but we advise not to do so because of two reasons. First, the results on identification may be counter-

productive as indicated by e.g. Mart́ınez-Garćıa et al. (2012). In our example models, we experimented

with measurement errors and found no significant benefit of adding these. Second, even though measurement

errors in the observation equation are a necessary requirement for some estimation procedures and filtering

techniques, they potentially affect the accuracy of parameter estimates (Atkinson et al., 2019).

7. Conclusion

We strongly recommend that researchers treat parameter identification as a model property, i.e. from

a model building perspective. A wise choice on observables or slight and subtle changes and fine-tuning

of model assumptions, functional specifications, or structural shocks have an impact on both theoretical

(yes/no) identification properties as well as on the strength of identification. In this regard, we side with

Adolfson et al. (2019) who argue that “lack of identification should neither be ignored nor be assumed to affect

all DSGE models, [. . . ] identification problems can be readily assessed on a case-by-case basis”. We extend

their approach by using different diagnostic tools for theoretical as well as empirical identification properties

and also show means to dissolve the identification failures. Moreover, our paper also has a computational

contribution as our research feeds into and extends Dynare’s (Adjemian et al., 2011) identification toolbox.

In particular, we provide means to analyze the criteria of Komunjer & Ng (2011) and Qu & Tkachenko

(2012) by using analytical (instead of numerical) derivatives to compute the relevant Jacobians. Lastly,
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even though our example models are empirically motivated, they are still of small scale and easy to replicate

and extend. They should be useful for both applied and theoretical macroeconomists as well as for teaching

purposes.
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Schmitt-Grohé, S., & Uribe, M. (2012). What’s News In Business Cycles. Econometrica, 80 . doi:10.3982/ECTA8050.

Smets, F., & Wouters, R. (2003). An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area. Journal of

the European Economic Association, 1 , 1123–1175. doi:10.1162/154247603770383415.

Smets, F., & Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach. American

Economic Review, 97 , 586–606. doi:10.1257/aer.97.3.586.

Villemot, S. (2011). Solving Rational Expectations Models at First Order: What Dynare Does. Dynare Working Papers 2

CEPREMAP.

Wald, A. (1949). Note on the Consistency of the Maximum Likelihood Estimate. The Annals of Mathematical Statistics, 20 ,

595–601. doi:jstor.org/stable/2236315.

27

http://dx.doi.org/10.1016/j.jmoneco.2012.10.008
http://dx.doi.org/10.1016/j.jmoneco.2012.10.008
http://dx.doi.org/10.2307/1913267
http://dx.doi.org/10.3982/ECTA8050
http://dx.doi.org/10.1162/154247603770383415
http://dx.doi.org/10.1257/aer.97.3.586
http://dx.doi.org/jstor.org/stable/2236315

	Introduction
	The identification problem in DSGE models
	Implementation of identification checks
	Rank checks
	Bayesian learning rate indicator
	Selection of observables

	Investment adjustment costs model
	Model description
	Model variants
	Theoretical identification
	Weak identification
	Summary

	Monetary model
	Model description
	Model variants
	Theoretical identification
	Weak identification
	Summary

	Implications for model building
	Choice of observables
	Functional specifications
	Model features
	Choice of shocks

	Conclusion

