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DSGE Model Framework



L [fe (yt—l’yv Y415 ut‘Qt)] =0
u, ~ WNQ,2 )

t,s € [: discrete time set, typically N or Z
y,: n endogenous variables (declared in var block)

u: n, exogenous variables (declared in varexo block)

2. : covariance matrix of invariant distribution of exogenous variables (declared in shocks
block)

0: ny model parameters (declared in parameters block)
f: n model equations (declared in model block)

fo 1s a continuous non-linear function indexed by a vector of parameters €



L [ 0 (yt—l’yv Y415 ut‘Qt)] =0
u, ~ WN(Q,2 )

Rational Expectations

» information set includes model equations f, value of parameters 6, value
of current state y,_,, value of current exogenous variables u, invariant
distribution (but not values!) of future exogenous variables u,

\)

» Q:information set (filtration, i.e. Q, C Q ., Vs > 0)
» Q =1/,0,y,_,u,u, ~NQO2)} forallte 1, s> 0

» E[ - |€] : conditional expectation operator, typically we use shorthand E,
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Perturbation approach



General idea

Step 1: Introduce perturbation parameter
» scale u, by a parameter 6 > 0: u, = o ¢, with e, ~ WN(0,2)
» note that this implies X, = 6°X,
» o is called the perturbation parameter
» non-stochastic, i.e. static model: 6 = 0

» stochastic, i.e. dynamic model: 6 > 0



General idea

Step 2: define dynamic solution

» invariant mapping between y, and (y,_, ,):
.Yt — g(yt—la uta 0)
» g( ) is called the policy-function or decision rule

» 2(-)is unknown, i.e. we need to solve a functional equation



General idea

Idea: Maybe we can get g from E, [f (yt_l, Vis Vit 15 ut)] =07

From the policy function we can define
)

) yt+1 — g( 9ut+196) — g( 9ut+190)



General idea

Rewrite dynamic model:  f (yil r Vi , Uy )

:f( Vi1 ) ) l/tt)

= F(y,_1, Uy Uy, 0)



General idea

Perturbation is based on the implicit function theorem:
EF(y,_,u,u.,,0) =0 [known]

implicitly defines

g(y,_1, U, ) [unknown]



General idea

We know how to solve for the non-stochastic (¢ = 0) steady-state y by
solving the static model:

f3) = f3,5,5,0) = F(7,0,0,0) = 0
which provides us with the non-stochastic steady-state for y

Even though we do not know g( - ) explicitly, we do know its value at :

y = g(¥,0,0)



Taylor approximation of g

yt:g( 9”1‘9 )

Let's approximate g( - ) around y with a 1st order Taylor expansion:

0g(y,0,0)

/
ou,

Ry + (ytl_y)_l_[ ](ut—0)+ (c—0)

Some progress: instead of an infinite unknown number of parameters for g,
we have now only three unknown matrices




Taylor approximation of g

But: how do we obtain these?

= [et's approximate F( - ) around y with a 1st order Taylor expansion!



More Notation

Yo = Yi1:Y0 = Vi Vi = Vi1

y_ Y- -
U 7 )’ g(y—a U, 0)

y+ g(g(y—a I/i, 0)9 u_|_9 6)
u U



Notation Jacobian Matrices

| 9¢(3,0,0) | 9¢(3,0,0) N ldg(i,(),())] unk |
g, = oy g, = o gy = P unknown
oo oo oo oo
- = la)’t/ll Chs l dy; ] i l@ml] ui= l ou] ] Lknown]
| oF(7) | oF (%) _ | 9F() _ lﬁF(f)] R
A [@yz’_l] . l o ] h lauzfﬂ K = implicit

All derivatives are evaluated at the non-stochastic steady-state



Taylor approximation of

Let's approximate F(r) = F(y, ,u, ,0) around 7 at 1st order:
F(r) ~ F(P)+ +F 0+ +F 6

with , u=w—-0)=u, ,0=(0—-0)=0o0



Taylor approximation of

Our model implies that E.F(r) = 0, so let's use this on the first-order
approximation:

0=EFr)~0 + F, ' + F,u+ F, E -e + F,

0~ F, +Fuu+(F0+Fu+Et8+)

Insight: this equation needs to be satisfied for any value of y_, u and o; hence:

F,=0 and F,=0 and F,+F, E e, =0



Taylor approximation of

We have 3 (multivariate) equations:
F,=0 and F,=0 and F,+F, Ee, =0
to recover three unknown matrices
» g, from Fy =0
»p g, fromF, =0

» 8,tromF +F, Ee =0



Recovering g



Recovering g_

F=f , g u,0) , g(gy_,u,0) ,u, ,0) ,u

g —

Yo
First order derivative with respect to o yields:

F,=f, 8 +f (& & *+ &)

First order derivative with respect to u, yields:

F, =1 8,



Recovering g_

8 + /(88 +8,) + /8L =0

1
8= ( T fY+gx +fY+) f;’+guEt8+
Of course, we know that E¢,. | = 0, which implies:

g, =0



Certainty Equivalence g_. = 0

When we derived the optimality conditions (aka model equations) agents do
take into account the effect of future uncertainty when optimizing

BUT: the policy function is independent of the size of the stochastic innovations:
j\}t — gyj}t—l T Eully + 0-0
Future uncertainty does not matter for the decision rules of the agents!

Certainty equivalence is a result of the first-order perturbation approximation,
we can break it with e.g. higher-order perturbation approximation



Recovering g,



Recovering g,

F=flv ,go_,u0) , g(gy_u,0) ,u, ,c) ,u

_—

—

Yo
First order derivative with respect to u yields:
Fo=18.+] 88+

F, = 0 implies: ¢ = — (JCyO if oo )_lfu



Recovering g,

8u =~ (fyo +fy+gy)_1fu

This is a linear equation which requires computing an inverse involving g,

Therefore: once we know g,, we can easily compute g,



Recovering g,



Recovering g,

-

F=f . ¢(v ,u,0) , g( g( ,u,05,u+,0),u

—~
.

Yo

First order derivative with respect to v and setting it to zero yields:

!
F=f +18+f 88 =0
This is a quadratic equation, but the unknown g, is a matrix!

It is generally impossible to solve this equation analytically, but there are several ways to
deal with this as this boils down to solving so-called Linear Rational Expectations Models




Linear Rational Expectations Model

Re-consider original dynamic model:

Etf( s Vis ,l/tt) =0

Take first-order Taylor expansion:
fo Vi +fyoj>t +f Ey +Lu,=0

In the literature this is known as a Linear Rational Expectations Model



Linear Rational Expectations Model

‘fy + ]Cyo + ][}7+El‘j>t+1 + ful/lt — O

Using the first-order policy function:
= 8y 1 T8,
Eyi =8, +8LEu =88, 1+8&u1) =88 1+88!
Rewriting the above equation we see the connection to perturbation:

(fy_ +]Cyogy +]§/+gygy) — = (]S/Ogu +]Cy_|_gygu +.fu) U, = 0

F,=0 F,=0




Structural State-Space System

+fyoj>t +fy+Etyt+l+fuut =0

(o) G ) =G ) )+ ()
[ O Ey,.. 0 Il 2 0 t

=
Ty~ Y

=D =4 =K = U,
D-Y=E-Y_,+U,

D and E are by construction square matrices



Stability

D-Y=E-Y_, +U,
IF D is invertible, then:
Y,=(D'E)Y_,+D'U
= (D 'E’D-'U + (D'E)'D7'U_, + (D'EY*'D7'U,_, + (DT'EY’D7'U _ + ...

Stable solution if and only if all Eigenvalues A. of (D™'E) are inside unit circle



Stability

REMINDER: Eigenvalue A, and corresponding eigenvector v, of (D~ 'E) satisfy:
AV; = (D_lE)vl-
BUT: D is typically singular and non-invertible!
THEREFORE: use Generalized Eigenvalues A, that satisfy:
ADv. = Ev,
SAME IDEA: stability only for |4.| < 1 (inside unit circle)

MATLAB: Lambda = e1g(E,D)



Generalized Schur Decomposition

Eigenvalue is defined via a zero determinant of matrix pencil: det(D + AE) = 0

So instead of inverse we'll use a Schur decomposition on matrix pencil:
D=0Q07T7Z and E=Q0'SZ

Q is orthogonal: Q' = O 'and Q0 =00 =1

Zisorthogonal: Z'=Z'and ZZ=77'=1

I'is upper triangular and S is quasi-upper triangular

MATLAB: [S5,1,Q,Z] = gz(E,D)




Generalized Eigenvalues

Stability: look at Generalized Eigenvalues ot D and E:

which can be found on the diagonal of S and T A= —



Structural State-Space System
(r6) s ) = (o ) (G5) ()

Insert the policy functions:

8 j}t—l

B
(o) () wse= (5 ) (6)
(9 DO
(3 D))



Schur Decomposition on Structural State-Space System

0 fy+ | 2 _{ Dy Iy I\ «
(o) (e)as= (5 7))

N N

\ -

D E
/ / I 2 . / / I
o ({)rm05 (1)

Multiply by Q:



Re-ordering of Schur decomposition

1 . 1\ .
1z ( gy) 8Vi—1 = S5Z ( gy> Vi-1
Order stable Generalized Eigenvalues |4;| < 1 in the upper left corner of 7"'and S:
Iy T\ (41 2\ (1 0 = St S\ (4 4a) (1 5
0 T/ \Ziy, Zyp) \&)" - 0 Sp») \Ziy Zn) \& -
I'}; and S, are square matrices and contain stable Generalized Eigenvalues

15, and §,, are square matrices and contain unstable Generalized Eigenvalues



Impose Stability

Iy T\ (Z11 4o / 0 = 511 S\ (4 4o / 5
L, 245 &y )77 = L1, 245 5y =

We DON'T WANT an explosive solution, so we rule this out by imposing;:
Ziy Ly Iy (XXX)
Ziy Zy) \® 0

such that the lower (explosive) rows are always zero:

|
-

.0.0.6¢ -0=0- - XXX+ - 0



Impose Stability
(2)- 3
Pre-multiply by Z:

/., 2
77" Iy _ (411 %12 (XXX )
—\& Z 25 0

1

Focusing on the upper rows we get:

Zi - XXX + Z;,-0=1& XXX = (Z;;) !



Recovering g,

(Zil Zél) ( 1) _ <(le)—1>
Zin Zyy) \5 0
From the lower rows we can recover g,

gy = — (2,21,



Blanchard & Khan (1980) conditions

1. Order condition: Squareness of Z,,

2. Rank condition: Invertibility of Z,,, i.e. full rank ot Z,,



summary



summary

Policy function / decision rule:
Y=Y+ 81—+ 81
Algorithm:
1. create D and E matrices

2. do a QZ/Schur decomposition with re-ordering
3. 8, =— (27,

Logu==h+h.8)7 e



summary

g, 1s a n X n matrix

e only columns wrt state (predetermined and mixed) variables are nonzero;
Dynare's oo_ . dr . ghx focuses only on states

e rows are in declaration order; rows in Dynare's oo_ . dr . ghx are in DR order
g,1s an X n, matrix

e rows are in declaration order; rows in Dynare's oo_ . dr . ghu are in DR order



[llustration:
perturbation_solver_LRE.m



