Solving rational expectations models yith first order perturbation: what Dynare does

Willi Mutschler

EBERHARD KARLS

DSGE Model Framework

$$
\begin{gathered}
E\left[f_{\theta}\left(y_{t-1}, y_{t}, y_{t+1}, u_{t} \mid \Omega_{t}\right)\right]=0 \\
u_{s} \sim W N\left(0, \Sigma_{u}\right)
\end{gathered}
$$

$t, s \in \mathbb{T}$: discrete time set, typically \mathbb{N} or \mathbb{Z}
$y_{t}: n$ endogenous variables (declared in var block)
$u_{t}: n_{u}$ exogenous variables (declared in varexo block)
Σ_{u} : covariance matrix of invariant distribution of exogenous variables (declared in shocks block)
$\theta: n_{\theta}$ model parameters (declared in parameters block)
$f: n$ model equations (declared in model block)
f_{θ} is a continuous non-linear function indexed by a vector of parameters θ

$$
\begin{gathered}
E\left[f_{\theta}\left(y_{t-1}, y_{t}, y_{t+1}, u_{t} \mid \Omega_{t}\right)\right]=0 \\
u_{s} \sim W N\left(0, \Sigma_{u}\right)
\end{gathered}
$$

Rational Expectations
> information set includes model equations f, value of parameters θ, value of current state y_{t-1}, value of current exogenous variables u_{t}, invariant distribution (but not values!) of future exogenous variables u_{t+s}
$>\Omega_{t}$: information set (filtration, i.e. $\Omega_{t} \subseteq \Omega_{t+s} \forall s \geq 0$)
$>\Omega_{t}=\left\{f, \theta, y_{t-1}, u_{t}, u_{t+s} \sim N(0, \Sigma)\right\}$ for all $t \in \mathbb{T}, s>0$
$\downarrow E\left[\cdot \mid \Omega_{t}\right]$: conditional expectation operator, typically we use shorthand E_{t}

$$
E\left[f_{\theta}\left(y_{t-1}, y_{t}, y_{t+1}, u_{t} \mid \Omega_{t}\right)\right]=0
$$

$$
E_{t}\left[f\left(y_{t-1}, y_{t}, y_{t+1}, u_{t}\right)\right]=0
$$

Perturbation approach

General idea

Step 1: Introduce perturbation parameter
\downarrow scale u_{t} by a parameter $\sigma \geq 0: u_{t}=\sigma \varepsilon_{t}$ with $\varepsilon_{t} \sim W N\left(0, \Sigma_{\varepsilon}\right)$
\rangle note that this implies $\Sigma_{u}=\sigma^{2} \Sigma_{\varepsilon}$

- σ is called the perturbation parameter
\downarrow non-stochastic, i.e. static model: $\sigma=0$
$>$ stochastic, i.e. dynamic model: $\sigma>0$

General idea

Step 2: define dynamic solution
$>$ invariant mapping between y_{t} and $\left(y_{t-1}, u_{t}\right)$:

$$
y_{t}=g\left(y_{t-1}, u_{t}, \sigma\right)
$$

> $g(\cdot)$ is called the policy-function or decision rule
> $g(\cdot)$ is unknown, i.e. we need to solve a functional equation

General idea

Idea: Maybe we can get g from $E_{t}\left[f\left(y_{t-1}, y_{t}, y_{t+1}, u_{t}\right)\right]=0$?
From the policy function we can define

$$
\begin{aligned}
& y_{t}=g\left(y_{t-1}, u_{t}, \sigma\right) \\
& y_{t+1}=g\left(y_{t}, u_{t+1}, \sigma\right)=g\left(g\left(y_{t-1}, u_{t}, \sigma\right), u_{t+1}, \sigma\right)
\end{aligned}
$$

General idea

Rewrite dynamic model: $f\left(y_{t-1}, y_{t}, y_{t+1}, u_{t}\right)$

$$
\begin{gathered}
=f\left(y_{t-1}, g\left(y_{t-1}, u_{t}, \sigma\right), g\left(g\left(y_{t-1}, u_{t} \sigma\right), u_{t+1}, \sigma\right), u_{t}\right) \\
\equiv F\left(y_{t-1}, u_{t}, u_{t+1}, \sigma\right)
\end{gathered}
$$

General idea

Perturbation is based on the implicit function theorem:

$$
E_{t} F\left(y_{t-1}, u_{t}, u_{t+1}, \sigma\right)=0 \quad[\text { known }]
$$

implicitly defines

$$
g\left(y_{t-1}, u_{t}, \sigma\right) \text { [unknown] }
$$

General idea

We know how to solve for the non-stochastic ($\sigma=0$) steady-state \bar{y} by solving the static model:

$$
\bar{f}(\bar{y})=f(\bar{y}, \bar{y}, \bar{y}, 0)=F(\bar{y}, 0,0,0)=0
$$

which provides us with the non-stochastic steady-state for \bar{y}
Even though we do not know $g(\cdot)$ explicitly, we do know its value at \bar{y} :

$$
\bar{y}=g(\bar{y}, 0,0)
$$

Taylor approximation of g

$$
y_{t}=g\left(y_{t-1}, u_{t}, \sigma\right)
$$

Let's approximate $g(\cdot)$ around \bar{y} with a 1st order Taylor expansion:

$$
y_{t} \approx \bar{y}+\left[\frac{\partial g(\bar{y}, 0,0)}{\partial y_{t-1}^{\prime}}\right]\left(y_{t-1}-\bar{y}\right)+\left[\frac{\partial g(\bar{y}, 0,0)}{\partial u_{t}^{\prime}}\right]\left(u_{t}-0\right)+\left[\frac{\partial g(\bar{y}, 0,0)}{\partial \sigma}\right](\sigma-0)
$$

Some progress: instead of an infinite unknown number of parameters for g, we have now only three unknown matrices

Taylor approximation of g

But: how do we obtain these?
\Rightarrow Let's approximate $F(\cdot)$ around \bar{y} with a 1st order Taylor expansion!

More Notation

$$
\begin{gathered}
u:=u_{t}, u_{+}:=u_{t+1} \\
y_{-}:=y_{t-1}, y_{0}:=y_{t}, y_{+}:=y_{t+1} \\
r:=\left(\begin{array}{c}
y_{-} \\
u \\
u_{+} \\
\sigma
\end{array}\right) \quad z:=\left(\begin{array}{c}
y_{-} \\
y \\
y_{+} \\
u
\end{array}\right)=\left(\begin{array}{c}
y_{-} \\
g\left(y_{-}, u, \sigma\right) \\
g\left(g\left(y_{-}, u, \sigma\right), u_{+}, \sigma\right) \\
u
\end{array}\right)
\end{gathered}
$$

Notation Jacobian Matrices

$$
\begin{aligned}
& g_{y}:=\left[\frac{\partial g(\bar{y}, 0,0)}{\partial y_{t-1}^{\prime}}\right] \quad g_{u}:=\left[\frac{\partial g(\bar{y}, 0,0)}{\partial u_{t}^{\prime}}\right] \quad g_{\sigma}:=\left[\frac{\partial g(\bar{y}, 0,0)}{\partial \sigma}\right] \quad \text { [unknown] } \\
& f_{y_{-}}:=\left[\frac{\partial f(\bar{z})}{\partial y_{t-1}^{\prime}}\right] \quad f_{y_{0}}:=\left[\frac{\partial f(\bar{z})}{\partial y_{t}^{\prime}}\right] \quad f_{y_{+}}:=\left[\frac{\partial f(\bar{z})}{\partial y_{t+1}^{\prime}}\right] \quad f_{u}:=\left[\frac{\partial f(\bar{z})}{\partial u_{t}^{\prime}}\right] \quad \text { [known] } \\
& F_{y}:=\left[\frac{\partial F((\bar{r})}{\partial y_{t-1}^{\prime}}\right] \quad F_{u}:=\left[\frac{\partial F(\bar{r})}{\partial u_{t}^{\prime}}\right] \quad F_{u_{+}}:=\left[\frac{\partial F(\bar{r})}{\partial u_{t+1}^{\prime}}\right] \quad F_{\sigma}:=\left[\frac{\partial F(\bar{r})}{\partial \sigma}\right] \quad \text { [implicit] }
\end{aligned}
$$

All derivatives are evaluated at the non-stochastic steady-state

Taylor approximation of F

Let's approximate $F(r)=F\left(y_{t-1}, u_{t}, u_{t+1}, \sigma\right)$ around \bar{r} at 1st order:

$$
F(r) \approx F(\vec{r})+F_{y} \hat{y}_{-}+F_{u} \hat{u}+F_{u_{+}} \hat{u}_{+}+F_{\sigma} \hat{\sigma}
$$

with $\hat{y}=\left(y_{-}-\bar{y}\right), \hat{u}=(u-0)=u, \hat{u}_{+}=\left(u_{+}-0\right)=\sigma \varepsilon_{+}, \hat{\sigma}=(\sigma-0)=\sigma$

Taylor approximation of F

Our model implies that $E_{t} F(r)=0$, so let's use this on the first-order approximation:

$$
\begin{gathered}
0=E_{t} F(r) \approx 0+F_{y} \hat{y}_{-}+F_{u} u+F_{u_{+}} E_{t} \sigma \varepsilon_{+}+F_{\sigma} \sigma \\
0 \approx F_{y} \hat{y}_{-}+F_{u} u+\left(F_{\sigma}+F_{u_{+}} E_{t} \varepsilon_{+}\right) \sigma
\end{gathered}
$$

Insight: this equation needs to be satisfied for any value of \hat{y}_{-}, u and σ; hence:

$$
F_{y}=0 \text { and } F_{u}=0 \text { and } F_{\sigma}+F_{u_{+}} E_{t} \varepsilon_{+}=0
$$

Taylor approximation of F

We have 3 (multivariate) equations:

$$
F_{y}=0 \text { and } F_{u}=0 \text { and } F_{\sigma}+F_{u_{+}} E_{t} \varepsilon_{+}=0
$$

to recover three unknown matrices
g_{y} from $F_{y}=0$
$>g_{u}$ from $F_{u}=0$
$>g_{\sigma}$ from $F_{\sigma}+F_{u_{+}} E_{t} \varepsilon_{+}=0$

Recovering g_{σ}

Recovering g_{σ}

$$
F=f(y_{-}, \underbrace{g\left(y_{-}, u, \sigma\right)}_{y_{0}}, \underbrace{g(\overbrace{g\left(y_{-}, u, \sigma\right)}^{y_{0}}, u_{+}, \sigma)}_{y_{+}}, u)
$$

First order derivative with respect to σ yields:

$$
F_{\sigma}=f_{y_{0}} g_{\sigma}+f_{y_{+}}\left(g_{y} g_{\sigma}+g_{\sigma}\right)
$$

First order derivative with respect to u_{+}yields:

$$
F_{u_{+}}=f_{y_{+}} g_{u}
$$

Recovering g_{σ}

$$
\begin{aligned}
& f_{y_{0}} g_{\sigma}+f_{y_{+}}\left(g_{x} g_{\sigma}+g_{\sigma}\right)+f_{y_{+}} g_{u} E_{t} \varepsilon_{+}=0 \\
& \Leftrightarrow g_{\sigma}=-\left(f_{y_{0}}+f_{y_{+}} g_{x}+f_{y_{+}}\right)^{-1} f_{y_{+}} g_{u} E_{t} \varepsilon_{+}
\end{aligned}
$$

Of course, we know that $E_{t} \varepsilon_{t+1}=0$, which implies:

$$
g_{\sigma}=0
$$

Certainty Equivalence $g_{\sigma}=0$

When we derived the optimality conditions (aka model equations) agents do take into account the effect of future uncertainty when optimizing

BUT: the policy function is independent of the size of the stochastic innovations:

$$
\hat{y}_{t}=g_{y} \hat{y}_{t-1}+g_{u} u_{t}+0 \cdot \sigma
$$

Future uncertainty does not matter for the decision rules of the agents!
Certainty equivalence is a result of the first-order perturbation approximation, we can break it with e.g. higher-order perturbation approximation

Recovering g_{u}

Recovering g_{u}

$$
F=f(y_{-}, \underbrace{g\left(y_{-}, u, \sigma\right)}_{y_{0}}, \underbrace{g\left(\frac{v_{0}}{g\left(y_{-}, u, \sigma\right)}, u_{+}, \sigma\right)}_{y_{+}}, u)
$$

First order derivative with respect to u yields:

$$
\begin{gathered}
F_{u}=f_{y_{0}} g_{u}+f_{y+} g g_{u}+f_{u} \\
g_{u}=-\left(f_{y_{0}}+f_{y} g_{y}\right)^{-1} f_{u}
\end{gathered}
$$

$F_{u}=0$ implies:

Recovering g_{u}

$$
g_{u}=-\left(f_{y_{0}}+f_{y_{y}} g_{y}\right)^{-1} f_{u}
$$

This is a linear equation which requires computing an inverse involving g_{y}
Therefore: once we know g_{y}, we can easily compute g_{u}.

Recovering g_{y}

Recovering g_{y}

$$
F=f(y_{-}, \underbrace{g\left(y_{-}, u, \sigma\right)}_{y_{0}}, \underbrace{g(\overbrace{g\left(y_{-}, u, \sigma\right)}^{y_{0}}, u_{+}, \sigma)}_{y_{+}}, u)
$$

First order derivative with respect to y_{-}and setting it to zero yields:

$$
F_{y}=f_{y_{-}}+f_{y_{0}} g_{y}+f_{y_{y}} g_{y} g_{y} \stackrel{!}{=} 0
$$

This is a quadratic equation, but the unknown g_{y} is a matrix!
It is generally impossible to solve this equation analytically, but there are several ways to deal with this as this boils down to solving so-called Linear Rational Expectations Models

Linear Rational Expectations Model

Re-consider original dynamic model:

$$
E_{t} f\left(y_{t-1}, y_{t}, y_{t+1}, u_{t}\right)=0
$$

Take first-order Taylor expansion:

$$
f_{y} \hat{y}_{t-1}+f_{y_{0}} \hat{y}_{t}+f_{y_{+}} E_{t} \hat{y}_{t+1}+f_{u} u_{t}=0
$$

In the literature this is known as a Linear Rational Expectations Model

Linear Rational Expectations Model

$$
f_{y_{-}} \hat{y}_{t-1}+f_{y_{0}} \hat{y}_{t}+f_{y_{+}} E_{t} \hat{y}_{t+1}+f_{u} u_{t}=0
$$

Using the first-order policy function:

$$
\begin{gathered}
\hat{y}_{t}=g_{y} \hat{y}_{t-1}+g_{u} u_{t} \\
E_{t} \hat{y}_{t+1}=g_{y} \hat{y}_{t}+g_{u} E_{t} u_{t+1}=g_{y}\left(g_{y} \hat{y}_{t-1}+g_{u} u_{t}\right)=g_{y} g_{y} \hat{y}_{t-1}+g_{y} g_{u} u_{t}
\end{gathered}
$$

Rewriting the above equation we see the connection to perturbation:

$$
(\underbrace{\left(f_{y_{-}}+f_{y_{0}} g_{y}+f_{y_{+}} g_{y} g_{y}\right)}_{F_{y}=0} \hat{y}_{t-1}=-(\underbrace{f_{y_{0}} g_{u}+f_{y_{+}} g_{y} g_{u}+f_{u}}_{F_{u}=0}) u_{t}=0
$$

Structural State-Space System

$$
\begin{gathered}
f_{y_{-}}^{\hat{y}_{t-1}}+f_{y_{0}} \hat{y}_{t}+f_{y_{+}} E_{t} \hat{y}_{t+1}+f_{u} u_{t}=0 \\
\underbrace{\left(\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right)}_{:=D} \underbrace{\binom{\hat{y}_{t}}{E_{t} \hat{y}_{t+1}}}_{:=Y_{t}}=\underbrace{\left(\begin{array}{cc}
-f_{y_{-}} & -f_{y_{0}} \\
0 & I
\end{array}\right)}_{:=E} \underbrace{\binom{\hat{y}_{t-1}}{\hat{y}_{t}}}_{:=Y_{t-1}}+\underbrace{\binom{-f_{u}}{0} u_{t}}_{U_{t}} \\
D \cdot Y_{t}=E \cdot Y_{t-1}+U_{t}
\end{gathered}
$$

D and E are by construction square matrices

Stability

$$
D \cdot Y_{t}=E \cdot Y_{t-1}+U_{t}
$$

IF D is invertible, then:

$$
\begin{gathered}
Y_{t}=\left(D^{-1} E\right) Y_{t-1}+D^{-1} U_{t} \\
=\left(D^{-1} E\right)^{0} D^{-1} U_{t}+\left(D^{-1} E\right)^{1} D^{-1} U_{t-1}+\left(D^{-1} E\right)^{2} D^{-1} U_{t-2}+\left(D^{-1} E\right)^{3} D^{-1} U_{t-3}+\ldots
\end{gathered}
$$

Stable solution if and only if all Eigenvalues λ_{i} of $\left(D^{-1} E\right)$ are inside unit circle

Stability

REMINDER: Eigenvalue λ_{i} and corresponding eigenvector v_{i} of $\left(D^{-1} E\right)$ satisfy:

$$
\lambda_{i} v_{i}=\left(D^{-1} E\right) v_{i}
$$

BUT: D is typically singular and non-invertible!
THEREFORE: use Generalized Eigenvalues λ_{i} that satisfy:

$$
\lambda_{i} D v_{i}=E v_{i}
$$

SAME IDEA: stability only for $\left|\lambda_{i}\right|<1$ (inside unit circle)
MATLAB: $\operatorname{Lambda}=e i g(E, D)$

Generalized Schur Decomposition

Eigenvalue is defined via a zero determinant of matrix pencil: $\operatorname{det}(D+\lambda E)=0$
So instead of inverse we'll use a Schur decomposition on matrix pencil:

$$
D=Q^{\prime} T Z^{\prime} \quad \text { and } \quad E=Q^{\prime} S Z^{\prime}
$$

Q is orthogonal: $Q^{\prime}=Q^{-1}$ and $Q^{\prime} Q=Q Q^{\prime}=I$
Z is orthogonal: $Z^{\prime}=Z^{-1}$ and $Z^{\prime} Z=Z Z^{\prime}=I$
T is upper triangular and S is quasi-upper triangular
MATLAB: $[S, T, Q, Z]=q z(E, D)$

Generalized Eigenvalues

Stability: look at Generalized Eigenvalues of D and E :

$$
\lambda_{i} D v_{i}=E v_{i}
$$

which can be found on the diagonal of S and $T: \quad \lambda_{i}=\frac{S_{i i}}{T_{i i}}$
If $T_{i i}=0$, then: $\quad S_{i i}>0 \rightarrow \lambda_{i}=\infty \quad$ and $\quad S_{i i}<0 \rightarrow \lambda_{i}=-\infty$

Structural State-Space System

$$
\left(\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right)\binom{\hat{y}_{t}}{E_{t} \hat{y}_{t+1}}=\left(\begin{array}{cc}
-f_{y_{-}} & -f_{y_{0}} \\
0 & I
\end{array}\right)\binom{\hat{y}_{t-1}}{\hat{y}_{t}}+\binom{-f_{u}}{0} u_{t}
$$

Insert the policy functions:

$$
\left.\begin{array}{c}
\left(\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right)\binom{g_{y} \hat{y}_{t-1}+g_{u} u_{t}}{g_{y}\left(g_{y} \hat{y}_{t-1}+g_{u} u u_{t}\right.} g_{u} \underbrace{E_{t} u_{t+1}}_{=0}
\end{array}\right)=\left(\begin{array}{cc}
-f_{y_{-}} & -f_{y_{0}} \\
0 & I
\end{array}\right)\binom{\hat{y}_{t-1}}{g_{y} \hat{y}_{t-1}+g_{u} u_{t}}+\binom{-f_{u} u_{t}}{0}
$$

Schur Decomposition on Structural State-Space System

$$
\begin{gathered}
\underbrace{\left(\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right)}_{D}\binom{I}{g_{y}} g_{y} \hat{y}_{t-1}=\underbrace{\left(\begin{array}{cc}
-f_{y_{-}} & -f_{y_{0}} \\
0 & I
\end{array}\right)}_{E}\binom{I}{g_{y}} \hat{y}_{t-1} \\
Q^{\prime} T Z^{\prime}\binom{I}{g_{y}} g_{y y} \hat{y}_{t-1}=Q^{\prime} S Z^{\prime}\binom{I}{g_{y}} \hat{y}_{t-1}
\end{gathered}
$$

Multiply by Q :

$$
T Z^{\prime}\binom{I}{g_{y}} g_{y} \hat{y}_{t-1}=S Z^{\prime}\binom{I}{g_{y}} \hat{y}_{t-1}
$$

Re-ordering of Schur decomposition

$$
T Z^{\prime}\binom{I}{g_{y}} g_{y} \hat{y}_{t-1}=S Z^{\prime}\binom{I}{g_{y}} \hat{y}_{t-1}
$$

Order stable Generalized Eigenvalues $\left|\lambda_{i}\right|<1$ in the upper left corner of T and S :

$$
\left(\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right)\left(\begin{array}{ll}
Z_{11}^{\prime} & Z_{21}^{\prime} \\
Z_{12}^{\prime} & Z_{22}^{\prime}
\end{array}\right)\binom{I}{g_{y}} g_{y y} \hat{y}_{t-1}=\left(\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right)\left(\begin{array}{ll}
Z_{11}^{\prime} & Z_{21}^{\prime} \\
Z_{12}^{\prime} & Z_{22}^{\prime}
\end{array}\right)\binom{I}{g_{y}} \hat{y}_{t-1}
$$

T_{11} and S_{11} are square matrices and contain stable Generalized Eigenvalues
T_{22} and S_{22} are square matrices and contain unstable Generalized Eigenvalues

Impose Stability

$\left(\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right)\left(\begin{array}{ll}Z_{11}^{\prime} & Z_{21}^{\prime} \\ Z_{12}^{\prime} & Z_{22}^{\prime}\end{array}\right)\binom{I}{g_{y}} g_{y} \hat{y}_{t-1}=\left(\begin{array}{cc}S_{11} & S_{12} \\ 0 & S_{22}\end{array}\right)\left(\begin{array}{ll}Z_{11}^{\prime} & Z_{21}^{\prime} \\ Z_{12}^{\prime} & Z_{22}^{\prime}\end{array}\right)\binom{I}{g_{y}} \hat{y}_{t-1}$
We DON'T WANT an explosive solution, so we rule this out by imposing:

$$
\left(\begin{array}{ll}
Z_{11}^{\prime} & Z_{21}^{\prime} \\
Z_{12}^{\prime} & Z_{22}^{\prime}
\end{array}\right)\binom{I}{g_{y}}=\binom{X X X}{0}
$$

such that the lower (explosive) rows are always zero:

$$
0 \cdot X X X+T_{22} \cdot 0=0 \cdot X X X+S_{22} \cdot 0=0
$$

Impose Stability

$$
Z^{\prime}\binom{I}{g_{y}}=\binom{X X X}{0}
$$

Pre-multiply by Z:

$$
\underbrace{Z Z^{\prime}}_{I}\binom{I}{g_{y}}=\left(\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right)\binom{X X X}{0}
$$

Focusing on the upper rows we get:

$$
Z_{11} \cdot X X X+Z_{12} \cdot 0=I \Leftrightarrow X X X=\left(Z_{11}\right)^{-1}
$$

Recovering g_{y}

$$
\left(\begin{array}{ll}
Z_{11}^{\prime} & Z_{21}^{\prime} \\
Z_{12}^{\prime} & Z_{22}^{\prime}
\end{array}\right)\binom{I}{g_{y}}=\binom{\left(Z_{11}\right)^{-1}}{0}
$$

From the lower rows we can recover g_{y} :

$$
\begin{gathered}
Z_{12}^{\prime} \cdot I+Z_{22}^{\prime} \cdot g_{y}=0 \\
g_{y}=-\left(Z_{22}^{\prime}\right)^{-1} Z_{12}^{\prime}
\end{gathered}
$$

Blanchard \& Khan (1980) conditions

1. Order condition: Squareness of Z_{22}
2. Rank condition: Invertibility of Z_{22}, i.e. full rank of Z_{22}

Summary

Summary

Policy function / decision rule:

$$
y_{t}=\bar{y}+g_{y}\left(y_{t-1}-\bar{y}\right)+g_{u} u_{t}
$$

Algorithm:

1. create D and E matrices
2. do a QZ/Schur decomposition with re-ordering
3. $g_{y}=-\left(Z_{22}^{\prime}\right)^{-1} Z_{12}^{\prime}$
4. $g_{u}=-\left(f_{y_{0}}+f_{y_{+}} g_{y}\right)^{-1} f_{u}$

Summary

g_{y} is a $n \times n$ matrix

- only columns wrt state (predetermined and mixed) variables are nonzero; Dynare's $0 o_{-} . d r . g h x$ focuses only on states
- rows are in declaration order; rows in Dynare's $0 o_{-} . d r . g h x$ are in DR order
g_{u} is a $n \times n_{u}$ matrix
- rows are in declaration order; rows in Dynare's $0 o_{-} . d r . g h u$ are in DR order

Illustration: perturbation_solver_LRE.m

